Copied to
clipboard

G = C32⋊D21order 378 = 2·33·7

2nd semidirect product of C32 and D21 acting via D21/C7=S3

non-abelian, supersoluble, monomial

Aliases: He32D7, C322D21, (C3×C21)⋊2S3, C7⋊(He3⋊C2), (C7×He3)⋊2C2, C21.2(C3⋊S3), C3.2(C3⋊D21), SmallGroup(378,43)

Series: Derived Chief Lower central Upper central

C1C3C7×He3 — C32⋊D21
C1C3C21C3×C21C7×He3 — C32⋊D21
C7×He3 — C32⋊D21
C1C3

Generators and relations for C32⋊D21
 G = < a,b,c,d | a3=b3=c21=d2=1, cac-1=ab=ba, dad=a-1b-1, bc=cb, bd=db, dcd=c-1 >

63C2
3C3
3C3
3C3
3C3
21S3
21S3
21S3
21S3
63C6
9D7
3C21
3C21
3C21
3C21
21C3×S3
21C3×S3
21C3×S3
21C3×S3
3D21
3D21
3D21
3D21
9C3×D7
7He3⋊C2
3C3×D21
3C3×D21
3C3×D21
3C3×D21

Smallest permutation representation of C32⋊D21
On 63 points
Generators in S63
(2 46 34)(3 35 47)(5 49 37)(6 38 50)(8 52 40)(9 41 53)(11 55 22)(12 23 56)(14 58 25)(15 26 59)(17 61 28)(18 29 62)(20 43 31)(21 32 44)
(1 45 33)(2 46 34)(3 47 35)(4 48 36)(5 49 37)(6 50 38)(7 51 39)(8 52 40)(9 53 41)(10 54 42)(11 55 22)(12 56 23)(13 57 24)(14 58 25)(15 59 26)(16 60 27)(17 61 28)(18 62 29)(19 63 30)(20 43 31)(21 44 32)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21)(22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63)
(1 21)(2 20)(3 19)(4 18)(5 17)(6 16)(7 15)(8 14)(9 13)(10 12)(23 42)(24 41)(25 40)(26 39)(27 38)(28 37)(29 36)(30 35)(31 34)(32 33)(43 46)(44 45)(47 63)(48 62)(49 61)(50 60)(51 59)(52 58)(53 57)(54 56)

G:=sub<Sym(63)| (2,46,34)(3,35,47)(5,49,37)(6,38,50)(8,52,40)(9,41,53)(11,55,22)(12,23,56)(14,58,25)(15,26,59)(17,61,28)(18,29,62)(20,43,31)(21,32,44), (1,45,33)(2,46,34)(3,47,35)(4,48,36)(5,49,37)(6,50,38)(7,51,39)(8,52,40)(9,53,41)(10,54,42)(11,55,22)(12,56,23)(13,57,24)(14,58,25)(15,59,26)(16,60,27)(17,61,28)(18,62,29)(19,63,30)(20,43,31)(21,44,32), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63), (1,21)(2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12)(23,42)(24,41)(25,40)(26,39)(27,38)(28,37)(29,36)(30,35)(31,34)(32,33)(43,46)(44,45)(47,63)(48,62)(49,61)(50,60)(51,59)(52,58)(53,57)(54,56)>;

G:=Group( (2,46,34)(3,35,47)(5,49,37)(6,38,50)(8,52,40)(9,41,53)(11,55,22)(12,23,56)(14,58,25)(15,26,59)(17,61,28)(18,29,62)(20,43,31)(21,32,44), (1,45,33)(2,46,34)(3,47,35)(4,48,36)(5,49,37)(6,50,38)(7,51,39)(8,52,40)(9,53,41)(10,54,42)(11,55,22)(12,56,23)(13,57,24)(14,58,25)(15,59,26)(16,60,27)(17,61,28)(18,62,29)(19,63,30)(20,43,31)(21,44,32), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63), (1,21)(2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12)(23,42)(24,41)(25,40)(26,39)(27,38)(28,37)(29,36)(30,35)(31,34)(32,33)(43,46)(44,45)(47,63)(48,62)(49,61)(50,60)(51,59)(52,58)(53,57)(54,56) );

G=PermutationGroup([[(2,46,34),(3,35,47),(5,49,37),(6,38,50),(8,52,40),(9,41,53),(11,55,22),(12,23,56),(14,58,25),(15,26,59),(17,61,28),(18,29,62),(20,43,31),(21,32,44)], [(1,45,33),(2,46,34),(3,47,35),(4,48,36),(5,49,37),(6,50,38),(7,51,39),(8,52,40),(9,53,41),(10,54,42),(11,55,22),(12,56,23),(13,57,24),(14,58,25),(15,59,26),(16,60,27),(17,61,28),(18,62,29),(19,63,30),(20,43,31),(21,44,32)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21),(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)], [(1,21),(2,20),(3,19),(4,18),(5,17),(6,16),(7,15),(8,14),(9,13),(10,12),(23,42),(24,41),(25,40),(26,39),(27,38),(28,37),(29,36),(30,35),(31,34),(32,33),(43,46),(44,45),(47,63),(48,62),(49,61),(50,60),(51,59),(52,58),(53,57),(54,56)]])

43 conjugacy classes

class 1  2 3A3B3C3D3E3F6A6B7A7B7C21A···21F21G···21AD
order123333336677721···2121···21
size16311666663632222···26···6

43 irreducible representations

dim1122236
type+++++
imageC1C2S3D7D21He3⋊C2C32⋊D21
kernelC32⋊D21C7×He3C3×C21He3C32C7C1
# reps11432446

Matrix representation of C32⋊D21 in GL5(𝔽43)

4242000
10000
003601
00066
00001
,
10000
01000
003600
000360
000036
,
1715000
282000
00010
0042420
00081
,
2628000
217000
0042420
00010
0003542

G:=sub<GL(5,GF(43))| [42,1,0,0,0,42,0,0,0,0,0,0,36,0,0,0,0,0,6,0,0,0,1,6,1],[1,0,0,0,0,0,1,0,0,0,0,0,36,0,0,0,0,0,36,0,0,0,0,0,36],[17,28,0,0,0,15,2,0,0,0,0,0,0,42,0,0,0,1,42,8,0,0,0,0,1],[26,2,0,0,0,28,17,0,0,0,0,0,42,0,0,0,0,42,1,35,0,0,0,0,42] >;

C32⋊D21 in GAP, Magma, Sage, TeX

C_3^2\rtimes D_{21}
% in TeX

G:=Group("C3^2:D21");
// GroupNames label

G:=SmallGroup(378,43);
// by ID

G=gap.SmallGroup(378,43);
# by ID

G:=PCGroup([5,-2,-3,-3,-7,-3,41,182,997,2163]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^21=d^2=1,c*a*c^-1=a*b=b*a,d*a*d=a^-1*b^-1,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of C32⋊D21 in TeX

׿
×
𝔽